低场核磁为煤炭开采与安全生产插上翅膀

发布时间:2019-07-03 10:36

[导读] 核磁共振作为一种先进的科学仪器,在煤矿开采和煤层气治理中发挥了怎样的作用?未来将如何发展?仪器信息网近日采访了中国矿业大学阚甲广副教授,以及翟成教授团队的孙勇博士。

煤炭是重要的基础能源和工业原料,为保障我国经济社会快速健康发展做出了重要贡献。虽然当前新能源、可再生能源得到快速的发展,但相当长一段时间内煤炭仍是我国的主体能源。近年来随着淘汰落后产能工作的推进,大力推行煤炭资源的绿色开采、智能开采、深地开发和未来采矿成为发展的重要方向。核磁共振作为一种先进的科学仪器,在煤矿开采和煤层气治理中发挥了怎样的作用?未来将如何发展?仪器信息网近日采访了中国矿业大学阚甲广副教授,以及翟成教授团队的孙勇博士。

低场核磁推动煤岩裂隙分布及浆液流动机理研究

阚甲广,中国矿业大学矿业工程学院副教授,自参加工作以来,一直专注于巷道围岩控制理论与技术研究工作,先后参与或负责完成了包括国家重点基础研究发展计划(973)项目、中国工程院重大咨询项目、“十一五”科技支撑计划项目、国家自然科学基金项目在内的40余项纵向与横向研究课题。研究成果获得教育部科学技术进步奖二等奖、中国煤炭工业科学技术奖二等奖等省部级奖励8项,发表SCI/EI检索论文31篇,获得国家发明专利授权16项、实用新型专利授权9项,副主编出版教材2部。

中国矿业大学阚甲广副教授

采矿领域,裂隙分析、注浆加固一直以来是研究的热点和难点。为推动矿业工程科学裂隙分布及浆液流动细观机理性研究,凸显中国矿业大学矿业工程研究的特色与优势,中国矿业大学矿业工程学院于2018年12月引进了产自OB体育 - 中国官方网站(简称:纽迈)的大口径核磁共振成像分析仪MacroMR12-150H-I,进行煤岩注浆的过程分析、浆料凝结过程等方面的研究。

大口径核磁共振成像分析仪MacroMR12-150H-I

采访当天,第二届纽迈“服务万里行”活动正在中国矿业大学南湖校区火热开展。仪器信息网编辑来到阚甲广副教授的实验室,他正与纽迈的技术人员就仪器应用进行交流。之所以选择纽迈的核磁共振仪器,阚甲广副教授表示:“采矿行业许多研究方向都与岩体中流体的渗流过程密切相关,我们想利用核磁共振成像分析仪器搭配在线注浆设备,对岩石试样中流体的渗透规律进行实时在线监测。通过国内广泛调研,了解到纽迈仪器能够具备相关功能与实力,这是促使双方达成合作的主要原因。”

据悉,中国矿业大学矿业工程学科入选了国家“双一流建设”名单。他表示:“深地开采、流态化开采是一liu学科建设的重点任务,学院计划以一liu学科建设为契机,建立一个设备齐全、技术先进、前景广阔的研究平台,核磁共振系统将为上述研究系统而服务。”作为国产分析仪器的一名新晋用户,阚甲广副教授希望国产分析仪器能加快核磁仪器装备的开发,进一步加大软件分析能力建设,为核磁共振设备在能源地矿领域的应用提供更为可靠的支持。

低场核磁助力煤体孔裂隙分布评价方法建立

另一位受访者孙勇博士师从翟成教授,课题组近年来专注于煤层致裂增透方法的研究,方向主要包括脉动水力压裂、液氮循环低温冲击致裂、液态二氧化碳致裂以及煤体孔隙结构的表征。孙勇博士介绍,为提高低透气性煤层瓦斯抽采效率,课题组在水力压裂技术的基础上提出了脉动水力压裂增透技术,通过脉动水压力作用,在煤体裂隙jian端产生交变应力,使煤体产生疲劳损伤,以较低的压力形成较为丰富的裂隙网络,相对静压压裂,起裂压力降低35%以上,裂隙数量增加20%以上。

中国矿业大学孙勇博士

将液氮周期性的注入煤体:液氮常压下可达-196℃,与高温煤体间的巨大温差产生温度应力;孔裂隙水结冰产生高达200MPa的压力和9%的体积膨胀,形成冰楔作用使裂隙jian端扩展;周期性注入的造成的冻融作用也会使煤体产生疲劳损伤。这是翟成教授课题组开展的另一项研究——液氮循环低温冲击致裂。孙勇博士介绍:“液氮循环低温冲击致裂增透方法是一种新型的无水化致裂增透方法,适用于我国煤炭资源丰富但极度缺水的西北地区。该方法通过冷冲击作用、冰楔作用和冻融作用这三重作用,可使煤层内部形成交织贯通的孔裂隙渗流网络,显著提高煤层气抽采效率。”

课题组第三个研究方向是液态二氧化碳致裂,即以液态二氧化碳作为压裂液,通过循环注入方式,使煤体在水-冰相变冻胀力、液态二氧化碳的气化膨胀力和化学酸化作用下,产生疲劳损伤,原始孔裂隙发育和衍生,形成相互交织贯通的立体裂隙网络,提高煤体的透气性。据介绍,该方法既可实现温室气体的有效封存,又能通过二氧化碳的高竞争吸附作用实现煤层瓦斯的驱替效果。

此外,课题组还开展了静态破碎剂和传统封孔材料的研究。在翟成教授课题组所关注的研究方向里,核磁共振技术在液氮循环致裂和液态二氧化碳致裂中的应用较为成熟,主要用于煤体孔隙结构特征演化规律分析,课题组基于此也形成了一套煤体孔隙结构测试分析的科学方法,评价不同致裂方法对煤体孔渗特性的影响。

中尺寸核磁共振成像分析仪MesoMR23-060H-I

孙勇博士表示:“相比压汞、气体吸附等常规测孔技术,核磁共振能够实现对样品的无损分析,样品尺寸可达50mm×50mm,测量孔径范围覆盖2nm~1 mm,能在几分钟内给出孔隙度、孔径分布、束缚流体与自由流体的分布情况以及渗透率等丰富信息,便于研究的开展及论文的写作。”

从研究生阶段起,孙勇就用核磁共振设备开展了煤体孔隙结构的分析测试。使用低场核磁设备5年有余,孙勇平时也会利用各类线上手段与纽迈的工程师进行有效沟通。他表示:“核磁共振测孔的理论已经非常成熟,纽迈给我们提供了稳定的设备,基本不需要维护,用起来非常的方便。另外我们还保持了良好的沟通,比如发现测的数据不对,纽迈工程师会远程协助我们解决问题,有新的成果或软件升级也会及时分享给我们。如此双向沟通使得产品在我们这用得更好,也让我们作为使用者的专业技有更快的提升。”

2013年,课题组还与纽迈合作,作为任务负责人承担了科技部国家重大科学仪器设备开发专项-“高性能核磁共振弛豫分析仪的开发和应用”项目中的“基于核磁共振弛豫分析技术的煤岩体裂隙分布评价方法开发”子任务。该任务对比了核磁共振相比压汞和扫描电镜在煤岩体裂隙分布评价中的应用,项目验收时得出结果,核磁共振在煤样测试方面相比两种传统方法的确有优势。下一步,课题组还希望将核磁共振与CT等方法进行结合,进一步深化和拓展煤体孔隙结构分析的应用范围。

[来源:仪器信息网]

电话客服

电话:400-060-3233

售后:400-060-3233

微信客服
公众号
TOP

返回顶部